Метрология ультразвуковых источников и полей

Численное моделирование, гидрофонные измерения, калибровка гидрофонов, шлирен-визуализация, ИК-термометрия и акустическая радиационная сила

Задачи LIMU

  • комбинирование численного моделирования и гидрофонных измерений для характеризации нелинейных ультразвуковых полей
  • калибровка широкополосных гидрофонов
  • оптические методы визуализации акустических полей
  • ИК-термометрия для измерения интенсивности ультразвука
  • измерение полной мощности ультразвуковых источников мегагерцового диапазона методом радиационной силы

Патенты

Контакты

Подробности

[1] Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields / O. A. Sapozhnikov, S. A. Tsysar, V. A. Khokhlova, W. Kreider // Journal of the Acoustical Society of America. — 2015. — Vol. 138, no. 3. — P. 1515–1532. DOI: 10.1121/1.4928396

[2] Broadband vibrometry of a two-dimensional ultrasound array using transient acoustic holography / S.A.Tsysar, D.A. Nikolaev, O.A. Sapozhnikov // Acoustical Physics. — 2021. — Vol. 67, no. 3. — P. 320–328. DOI: 10.1134/S1063771021030131

[3] Holographic extraction of plane waves from an ultrasound beam for acoustic characterization of an absorbing layer of finite dimensions / D. A. Nikolaev, S. A. Tsysar, V. A. Khokhlova et al. // Journal of the Acoustical Society of America. — 2021. — Vol. 149, no. 1. — P. 386–404. DOI: 10.1121/10.0003212

[4] Synthesized acoustic holography: A method to evaluate steering and focusing performance of ultrasound arrays / R. P. Williams, W. Kreider, F. A. Nartov, M. M. Karzova, V. A. Khokhlova, O. A. Sapozhnikov, T. D. Khokhlova // Journal of the Acoustical Society of America — 2025. — Vol. 157, no. 4. — P. 2750–2762. DOI: 10.1121/10.0036225

[5] Phase correction of the channels of a fully populated randomized multielement therapeutic array using the acoustic holography method / S. A. Tsysar, P. B. Rosnitskiy, S. A. Asfandiyarov et al. // Acoustical Physics. — 2024. — Vol. 70, no. 1. — P. 82–89. DOI: 10.1134/S1063771023601280

[6] Determination and compensation of axes misalignment of three-coordinate positioning systems using acoustic holography / D.A. Nikolaev, S.A.Tsysar, O.A. Sapozhnikov  // Bulletin of the Russian Academy of Sciences: Physics. — 2021. — Vol. 85, no. 6. — P. 658–664.

[7] Using acoustic holography to characterize absorbing layers / D. Nikolaev, S. Tsysar, A. Krendeleva et al. // Proceedings of Meetings on Acoustics. — 2019. — Vol. 38, no. 045012. — P. 1–5. DOI: 10.1121/2.0001120

[8] Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling / W. Kreider, P. V. Yuldashev, O. A. Sapozhnikov et al. // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. — 2013. — Vol. 60, no. 8. — P. 1683–1698. DOI: 10.1109/TUFFC.2013.2750

[9] Characterization of cylindrical ultrasonic transducers using acoustic holography / S.A. Tsysar, Y.D. Sinelnikov, O.A. Sapozhnikov // Acoustical Physics. — 2011. — Vol. 57, no. 1. — P. 94–105. DOI: 10.1134/S1063771011010167

[10] Transient acoustic holography for reconstructing the particle velocity of the surface of an acoustic transducer / Sapozhnikov O. A., Ponomarev A. E., Smagin M. A. // Acoustical Physics. — 2006. — Vol. 52, no. 3. — P. 324–330. DOI: 10.1134/S1063771006030134

[11] Spiral arrangement of elements of two-dimensional ultrasonic therapeutic arrays as a way of increasing the intensity at the focus / L.R. Gavrilov, O.A. Sapozhnikov, V.A. Khokhlova // Bulletin of the Russian Academy of Sciences: Physics. — 2015. — Vol. 79, no. 10. — P. 1232–1237. DOI: 10.3103/S106287381510010X

[12] Finding the dispersion relations for lamb-type waves in a concave piezoelectric plate by optical visualization of the ultrasound field radiated into a fluid / O.A. Sapozhnikov, M.A. Smagin  // Acoustical Physics. — 2015. — Vol. 61, no. 2. — P. 181–187. DOI: 10.1134/S106377101501011X