Propagation of sound waves in inhomogeneous media

Numerical modeling, development of optimal diagnostic and therapeutic regimes, verification experiments

LIMU tasks

  • Numerical modeling of sound fields in heterogeneous media based on CT and MRI data
  • Development of optimal modes of ultrasound diagnostics and therapy
  • Verification experiments on phantoms of heterogeneous tissues

Activity types

  • numerical modeling
  • experiment

Contacts

Details

[1] “HIFU beam”: a simulator for predicting axially symmetric nonlinear acoustic fields generated by focused transducers in a layered medium / P. V. Yuldashev, M. M. Karzova, W. Kreider et al. // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. — 2021. — Vol. 68, no. 9. — P. 2837–2852. DOI: 10.1109/TUFFC.2021.3074611

[2] Wide-angle parabolic approximation for modeling high-intensity fields from strongly focused ultrasound transducers / P. V. Yuldashev, I. S. Mezdrokhin, V. A. Khokhlova // Acoustical Physics. — 2018. — Vol. 64, no. 3. — P. 309–319. DOI: 10.1134/S1063771018030168

[3] Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays / P. V. Yuldashev, V. A. Khokhlova // Acoustical Physics. — 2011. — Vol. 57, no. 3. — P. 334–343.

[4] Setting boundary conditions to the Khokhlov–Zabolotskaya equation for modeling ultrasound fields generated by strongly focused transducers / P. B. Rosnitskiy, P. V. Yuldashev, B. A. Vysokanov, V. A. Khokhlova // Acoustical Physics. — 2016. — Vol. 62, no. 2. — P. 151–159. DOI: 10.1134/S1063771016020123

[5] Simulating and measuring the acoustic radiation force of a focused ultrasonic beam on elastic spheres in water / A. V. Nikolaeva, M. M. Karzova, S. A. Tsysar et al. // Bulletin of the Russian Academy of Sciences: Physics. — 2019. — Vol. 83, no. 1. — P. 77–81. DOI: 10.3103/S1062873819010192

[6] Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction / P. B. Rosnitskiy, P. V. Yuldashev, O. A. Sapozhnikov et al. // Journal of the Acoustical Society of America. — 2019. — Vol. 146, no. 3. — P. 1786–1798. DOI: 10.1121/1.5126685

[7] Impact of the trajectory of treatment on the rate of thermal ablation and ablated volume of biological tissue irradiated by shockwave focused ultrasonic exposure / P. A. Pestova, P. V. Yuldashev, V. A. Khokhlova, M. M. Karzova // Bulletin of the Russian Academy of Sciences: Physics. — 2024. — Vol. 88, no. 1. — P. 108–112.

[8] Thermal ablation of biological tissue by sonicating discrete foci in a specified volume with a single wave burst with shocks / P. A. Pestova, P. V. Yuldashev, V. A. Khokhlova, M. M. Karzova // Acoustical Physics. — 2024. — Vol. 70, no. 3. — P. 434–443.

[9] The use of focused ultrasound beams with shocks to suppress diffusion effects in volumetric thermal ablation of biological tissue / P. A. Pestova, M. M. Karzova, P. V. Yuldashev, V. A. Khokhlova // Acoustical Physics. — 2023. — Vol. 69, no. 4. — P. 448–458.

[10] Comparative characterization of nonlinear ultrasound fields generated by Sonalleve V1 and V2 MR-HIFU systems / M. M. Karzova, W. Kreider, A. Partanen et al. // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. — 2023. — Vol. 70, no. 6. — P. 521–537. DOI: 10.1109/TUFFC.2023.3261420

[11] Compensation for aberrations when focusing ultrasound through the skull based on CT and MRI data / D. D. Chupova, P. B. Rosnitskiy, O. V. Solontsov et al. // Acoustical Physics. — 2024. — Vol. 70, no. 2. — P. 288–298.

[12] Compensation for aberrations of focused ultrasound beams in transcranial sonications of brain at different depths / D. D. Chupova, P. B. Rosnitskiy, L. R. Gavrilov, V. A. Khokhlova // Acoustical Physics. — 2022. — Vol. 68, no. 1. — P. 1–10. 

[13] On the possibility of using multi-element phased arrays for shock-wave action on deep brain structures / P. Rosnitskiy, L. Gavrilov, P. Yuldashev et al. // Acoustical Physics. — 2017. — Vol. 63, no. 5. — P. 531–541. DOI: 10.1134/S1063771017050104

[14] Viscoelastic nonlinear resonator with gas-filled cavities / T. B. Krit, V. G. Andreev, I. Yu. Demin // Acta Acustica united with Acustica — 2015. — Vol. 101, no. 5. — P. 915–919.  DOI: 10.3813/AAA.918886

[15] Особенности применения ультразвуковых фазированных решеток с различным количеством элементов при облучении тканей в присутствии ребер / С.А. Ильин, Л.Р. Гаврилов, В.А. Хохлова // Учёные записки физического факультета МГУ. — 2014. — Т. 5 . — С. 145342.