Nonlinear wave physics

Nonlinear acoustics equations, broadband signals in nonlinear media, acoustic radiation force

LIMU tasks

  • propagation of broadband nonliner signals in weakly dispersive media
  • acoustic radiation force and its applications in metrology and medicine
  • group analysis of differential equations of nonlinear acoustics

Activity types

  • numerical modeling
  • theory
  • experiment

Contacts

Details

[1] Fully nonlinear three-dimensional modeling of parametric interactions in the field of a dual-frequency acoustic array / A. V. Kvashennikova, P. V. Yuldashev, V. A. Khokhlova, I. B. Esipov // Journal of the Acoustical Society of America. — 2024. — Vol. 155, no. 3. — P. 1682–1693. DOI: 10.1121/10.0025049

[2] Three-dimensional wide-angle parabolic equations with propagator separation based on finite fourier series / P. V. Yuldashev, E. O. Konnova, M. M. Karzova, V. A. Khokhlova // Acoustical Physics. — 2024. — Vol. 70, no. 5. — P. 783–796. DOI: 10.1134/S1063771024602206

[3] Demodulation of pulsed acoustic signals in strongly nonlinear propagation regimes / A. V. Kvashennikova, M. S. Sergeeva, P. V. Yuldashev et al. // Acoustical Physics. — 2024. — Vol. 70, no. 5. — P. 797–807. DOI: 10.1134/S1063771024602279

[4] Nonlinear ultrasound fields generated by an annular array with electronic and geometric adjustment of its focusing angle / E. M. Ponomarchuk, P. V. Yuldashev, D. A. Nikolaev et al. // Acoustical Physics. — 2023. — Vol. 69, no. 4. — P. 459–470. DOI: 10.1134/S1063771023600560

[5] Effect of surface roughness on nonlinear reflection of weak shock waves / M. Karzova, T. Lechat, S. Ollivier et al. // Journal of the Acoustical Society of America. — 2019. — Vol. 146, no. 5. — P. EL438–EL443. DOI: 10.1121/1.5133737

[6] “HIFU beam”: a simulator for predicting axially symmetric nonlinear acoustic fields generated by focused transducers in a layered medium / P. V. Yuldashev, M. M. Karzova, W. Kreider et al. // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. — 2021. — Vol. 68, no. 9. — P. 2837–2852. DOI: 10.1109/TUFFC.2021.3074611

[7] Viscoelastic nonlinear resonator with gas-filled cavities / T. B. Krit, V. G. Andreev, I. Yu. Demin // Acta Acustica united with Acustica — 2015. — Vol. 101, no. 5. — P. 915–919.  DOI: 10.3813/AAA.918886

[8] Investigation into the mechanisms of tissue atomization by high intensity focused ultrasound / J. C. Simon, O. A. Sapozhnikov, Y. N. Wang et al. // Ultrasound in Medicine and Biology. — 2015. — Vol. 41, no. 5. — P. 1372–1385. DOI: 10.1016/j.ultrasmedbio.2014.12.022

[9] Application of a mach–zehnder interferometer to the observation of mach stem formation when a shock wave is reflected from a rigid surface / M. M. Karzova, P. V. Yuldashev, V. A. Khokhlova et al. // Bulletin of the Russian Academy of Sciences: Physics. — 2015. — Vol. 79, no. 10. — P. 1293–1295. DOI: 10.3103/S1062873815100123

[10] Nonlinear acoustics today / O. A. Sapozhnikov, V. A. Khokhlova, R. O. Cleveland et al. // Acoustics today. — 2019. — Vol. 15, no. 3. — P. 55–64. DOI: 10.1121/AT.2019.15.3.55

[11] Counterpropagation of waves with shock fronts in a nonlinear tissue-like medium / E.G. Lobanova, S.V. Lobanov, V.A. Khokhlova // Acoustical Physics. — 2014. — Vol. 60, no. 4. — P. 387–397. DOI: 10.1134/S1063771014040071

[12] Nonlinear evolution of a shock pulse in the media with an absorption powerlike in frequency / Kashcheeva S. S., Khokhlova V. A. // IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA. — 1998. — Vol. 62, no. 12. — P. 2375–2378.

[13] Analytical method for describing the paraxial region of finite amplitude sound beams / M. F. Hamilton, V. A. Khokhlova, O. V. Rudenko // Journal of the Acoustical Society of America. — 1997. — Vol. 101, no. 3. — P. 1298–1308. DOI: 10.1121/1.418158

[14] A new method for calculating the paraxial region of intense acoustic beams / M. F. Hamilton, O. V. Rudenko, V. A. Khokhlova // Acoustical Physics. — 1997. — Vol. 43, no. 1. — P. 39–44.

[15] A modification of the spectral description of nonlinear acoustic waves with discontinuities / Pishchalnikov Y. A., Sapozhnikov O. A., Khokhlova V. A. // Acoustical Physics. — 1996. — Vol. 42, no. 3. — P. 362–367. 

[16] Fluctuation characteristics of sonic booms traversing a random inhomogeneous layer / Dubrovskii A. N., Rudenko O. V., Khokhlova V. A. // Acoustical Physics. — 1996. — Vol. 42, no. 5. — P. 550–554. 

[16] Statistics of sawtooth acoustic-waves with random spatial modulation / Rudenko O. V., Khokhlova V. A. // Acoustical Physics. — 1994. — Vol. 40, no. 1. — P. 111–115.

Leave a Reply

Your email address will not be published. Required fields are marked *